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CONTINUUM MODELING OF ELASTIC DIELECTRIC SOLIDS WITH DEFECTS, WITH 
APPLICATION TO BARIUM STRONTIUM TITANATE THIN FILMS 

 
 John D. Clayton*, Peter W. Chung**, M.A. Grinfeld*, & William D. Nothwang*** 
 *Impact Physics, U.S. Army Research Laboratory, Aberdeen Proving Ground, MD, 21005, USA 
 **Computational Science and Engineering, U.S. Army Research Laboratory, USA 

***Multifunctional Materials, U.S. Army Research Laboratory, USA 
 
Summary A model is developed for the electromechanical behaviour of dielectric crystals with defects: dislocations, vacancies, and 
misoriented boundaries.  A geometric framework describes the deformation of the lattice in the presence of such defects.  Thermodynamic 
and kinetic relations are formulated, the latter enabling description of diffusion of charged vacancies and mass rearrangement at free 
surfaces.  Analytical and numerical solutions of specific problems offer insight into performance of barium strontium titanate (BST) films.  

 
THEORY: KINEMATICS, THERMODYNAMICS, AND KINETICS 

 
A number of continuum theories describing the coupled electrostatic and mechanical behaviour of dielectric crystalline solids 
have emerged during the previous half century [1-3].  The present formulation extends traditional models [2] of elastic 
dielectric materials to account for imperfections in the lattice, specifically vacancies and dislocations.  Effects of 
misorientations across polarized subdomains are also considered.  Defects are not resolved individually, but instead their 
number densities are treated via continuous distributions.  The macroscopic displacement gradient ∇  obeys u
 

 E P∇ = + +u Vγ γ γ ,              ( ) ( ) ( )k k kP

k

ν= ⊗∑γ s m ,              ( )/ 3V χ=γ 1 , (1) 

where Eγ  is the recoverable lattice distortion, Pγ  is the plastic distortion, Vγ  is expansion or contraction from defects, 

ν  is the slip rate on glide system k with direction s and normal m, and χ  is the volume fraction of defects.  Let 

 ,               ξ = −∇ Qi χ αξ= ,               ( ) /(1a )trα χ= − + ∇ − −EQ n q γi i , (2) 

where Q is the bulk flux of vacancies, ξ  is the number of vacancies per unit volume, and α  is the volume per vacancy. 

Surface fluxes are described by the vector q, with components spanning two surface coordinates, and ∇  is the surface 
gradient.  Conservation of mass at external surface s provides the final equality in (2) specifying the rate of surface 
growth  [4].  The lattice deformation mapping A is introduced similarly to that in [5]: a
 

 . . .
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b b bA .
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bδ γ γ= + + ,         ,        ..

,
ˆ ˆ c

b a a b ba cΓ∇ = −d d d .. 1 .. .
. . ,
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cb d b c cb c bA A aΓ Ξ ϒ δ−= + + , (3) 

and includes effects of elasticity and stress-free volumetric expansion, but not dislocation glide.  Spatial gradients on 

the manifold of lattice directors are described by the covariant derivative ad ∇̂  [5, 6] , where  and  account for 

rotation and stretch gradients, respectively, due to surface and point defects.   Three quantities describing the defect 
content of the crystal emerge from the torsion and curvature of the connection in the second and third of Eq. (3): the 
dislocation density tensor, the disclination density tensor, and the point defect vector, each having physical 
interpretations in perovskite crystals.  The local governing equations of electrostatics are written in reduced form as [1, 
2] 

..a
cbΞ cϒ

 φ= −∇E ,           ρ̂ = ∇ Di ,          0ε= +D E P , (4) 

with E  the electric field, φ  the electric potential, D the electric displacement, P the polarization, 0ε  the permittivity of 

free space, and ρ̂  the charge density related to the concentration of vacancies by ˆ ezρ ξ= , where e is the charge of an 

electron and z is the valence contribution of each defect.  The Helmholtz free energy per unit mass follows the 
functional dependencies 
 ( , , , , )hψ ψ ξ θ= Eγ P , (5) 

with the scalar-valued function  accounting for energetic contributions from point, line, and surface defects distinct 
from 

h
ξ .  An admissible set of bulk thermodynamic and kinetic relations is  

 ( )/ab E
abσ ρ ψ γ= ∂ ∂ ,        / a

aE Pρ ψ= ∂ ∂ ,       /η ψ θ= −∂ ∂ , (6) 

 / ez pμ ρ ψ ξ φ α= ∂ ∂ + + ,       μ= − ∇Q di ,      ( )( ) /kk h hτ ν μ μ ρ ψ+ ∇ ∇ ≥ ∂ ∂∑ di i ,     0≥d .   (7)  

Above,  is the stress, σ ρ  is the mass density, η  is the entropy, p is the pressure, d is the bulk diffusivity of point 

defects, and ( )kτ  is the resolved shear stress on slip system k.  At free surfaces, vacancy fluxes obey 
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  ( ) ( )ˆ / 1 trβ α ρψ φρ κς χ μ⎡ ⎤= + − − − +⎣ ⎦
EQ n γi ,   ( ) ( )ˆ ˆ / 1 trρψ φρ κς χ⎡ ⎤= − ∇ + − − −⎣ ⎦

Eq A γi ,    ˆ 0≥A ,   (8) 

where ς  is the energy per unit area associated with surface tension, κ  is the surface curvature, and 0β ≥ .  Extension 

of the theory to large deformations and nonlinear electrostatics is currently underway.   
 

 APPLICATION: CHARGED VACANCY MIGRATION IN BST THIN FILMS 
 
The present application focuses on BST films in the paraelectric (i.e. cubic) phase.  Free energy potential (8) is written 

 ( ) ( )(1 ) / 2 / 2abcd E E a b
abab cd P Pρψ αξ γ γ Λ ϕ= − + + , (9) 

 , (10) 1 1
0 0( ( ) ln ) ( ( ) / 2)A A B A A BN G N k N G N kϕ α θ θχ χ α θ Γ θχ− −= + ≈ + 2

where  and  are elastic and dielectric constants, respectively, and where  and abcd
abΛ AN Bk  are Avogadro’s number 

and Boltzmann’s constant.  Equations (2), (3), and (6)-(8) are solved using numerical methods (1-D and 3-D transient 
simulations) and analytical methods (1-D steady-state solutions).  In the former case, in one spatial dimension (Fig. 1) 
and under the action of an externally applied voltage, vacancies coalesce into layers of large concentration near 
potential free boundaries when the first of (10) is used, leading to an increase in the electric field in the vicinity of such 
boundaries that may affect loss characteristics of the film.  Heterogeneous growth of the surface of the film resulting 
from surface roughness is evident in the 3-D solution of (2) and (8), as shown in Fig. 2.  At steady state and in one 
spatial dimension, using the second of (10), the vacancy distribution obeys the simple equation 
    
 , (11) 2 2 2 1

0( 2 / 3) / ( ) ( )E
Bk d dx ezΓ θ α γ χ αε ε χ−+ − 0R =

where , Eγ , and Rε  are respectively the elastic modulus, uniaxial elastic strain, and dielectric constant.  The solution 

of (11) for boundary conditions corresponding to a grain boundary depletion layer [7] is shown in Fig. 3, where σ  is 
the average compressive residual stress in the film possibly due to interfacial lattice parameter mismatch, σ ′  and Γ ′  
are the normalized stress and normalized energy per vacancy, and Sχ  is the saturation density of vacancies.  Nonlinear 

defect distributions and decreasing average concentration are positively correlated with increasing compressive 
stresses.
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Fig. 1.  Numerical solution (1-D) for BST film of thickness T: (left) geometry, (center) transient vacancy concentration c, and (right) electric field E 
(initial concentration , applied voltage ). 0 0.5 ppmc = 0 2.5 VxV φ == =
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Fig. 2.  Numerical solution (3-D) for surface coordinate x.                 Fig. 3.  Geometry and analytical solution (1-D) for steady state vacancy content. 
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